Digital Computation of the Fractional Fourier Transform - Signal Processing, IEEE Transactions on
نویسندگان
چکیده
An algorithm for efficient and accurate computation of the fractional Fourier transform is given. For signals with time-bandwidth product N , the presented algorithm computes the fractional transform in O( N log N ) time. A definition for the discrete fractional Fourier transform that emerges from our analysis is also discussed.
منابع مشابه
Digital computation of the fractional Fourier transform
An algorithm for efficient and accurate computation of the fractional Fourier transform is given. For signals with time-bandwidth product N , the presented algorithm computes the fractional transform in O( N log N ) time. A definition for the discrete fractional Fourier transform that emerges from our analysis is also discussed.
متن کاملA method for the discrete fractional Fourier transform computation
A new method for the discrete fractional Fourier transform (DFRFT) computation is given in this paper. With the help of this method, the DFRFT of any angle can be computed by a weighted summation of the DFRFTs with the special angles.
متن کاملThe discrete fractional cosine and sine transforms
This paper is concerned with the definitions of the discrete fractional cosine transform (DFRCT) and the discrete fractional sine transform (DFRST). The definitions of DFRCT and DFRST are based on the eigen decomposition of DCT and DST kernels. This is the same idea as that of the discrete fractional Fourier transform (DFRFT); the eigenvalue and eigenvector relationships between the DFRCT, DFRS...
متن کاملClosed-form discrete fractional and affine Fourier transforms
The discrete fractional Fourier transform (DFRFT) is the generalization of discrete Fourier transform. Many types of DFRFT have been derived and are useful for signal processing applications. In this paper, we will introduce a new type of DFRFT, which are unitary, reversible, and flexible; in addition, the closed-form analytic expression can be obtained. It works in performance similar to the c...
متن کاملFractional Fourier series expansion for finite signals and dual extension to discrete-time fractional Fourier transform
Conventional Fourier analysis has many schemes for different types of signals. They are Fourier transform (FT), Fourier series (FS), discrete-time Fourier transform (DTFT), and discrete Fourier transform (DFT). The goal of this correspondence is to develop two absent schemes of fractional Fourier analysis methods. The proposed methods are fractional Fourier series (FRFS) and discrete-time fract...
متن کامل